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ABSTRACT. Uncertainty of systems can be expressed in some cases with interval models.
Simulation of interval models produces envelopes. These envelopes can have properties like
completeness, soundness and hence be overbounded or underbounded. To perform the
simulation of interval models there are quantitative, qualitative and semiqualitative simulators.
A brief description of some simulators and a study of their properties are made. Some
enhancements based on Modal Interval Analysis are proposed.

1.- INTRODUCTION.

Most of nowadays simulators need a mathematical model of the system to be simulated where
parameters are real numbers. This means that user must have a totally determinist knowledge of
the system. The model of complex systems sometimes can not be defined precisely due to
uncertainties. These uncertainties can be unstructured (the equations of the system are not
known) or structured (the equations are known but not the values of its parameters). There are
different causes:
• The knowledge of the system is not complete because the real system can not be observed

(some parts of a nuclear power plant) or does not exist yet (a factory before it is built or a
product before its is manufactured) [Bon94] [Ves95].

• The model of the system is known but it is too complex and a simplified one is used
[Bon94].

• Parameters of the system can change through time due to unknown, unpredictable or
difficult to modelize phenomenons [Ves95].

2.- UNCERTAIN SYSTEMS AND INTERVAL MODELS.

Precise models can not describe the behaviour of these systems and a model space is needed
[Kay95]. One special case of these model space is when it is described with known equations
(structured uncertainties) where parameters are intervals. For instance, such a model could be a
transfer function with interval parameters:

( ) ( )
( )

[ ] [ ]
[ ] [ ] [ ]F s

Y s

U s

s

s s
= =

+
+ +

2 3 1 3

1 2 3 5 2 42

, ,

, , ,



In fact, a precise model is an interval model where interval widths are zero. As interval widths
decrease, precision increases [Kay96].

3.- SIMULATION OF INTERVAL MODELS.

When a model space or a model family is represented with an interval model and its behaviour
is simulated, the result can not be the one given by traditional simulators for precise systems,
that is a single curve through time for each variable. The behaviour of such a system can be
represented in different ways:
• Envisionment. The behaviour of the system is represented globally using a graph like the

one in figure 1 [Cog96]. This graph is a tree where all possible behaviours of a system
starting from an initial state are qualitatively represented. It is a tree and not a single path
because uncertainty is propagated [Ber92] [Bon94] [Bon96]. There are different types of
envisionments depending on the initial state. If it is known then it is a complete
envisionment [Kui86] and if it is unknown then it is a total envisionment [For88].

figure 1. Envisionment

• Simulation. An only image for a specific initial state is given. This image is a family of time
curves called envelope, like the one in figure 2. Some authors call them attainable
envisionments [For88] or partial envisionments [Kui86].

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

figure 2. The ends of the envelope are two curves



4.- ENVELOPES’ PROPERTIES.

This work is centered in envelope generation so envisionment will not be taken into account.
Size of an envelope is critical. If it is too tight there are systems belonging to the model family
whose output is outside the envelope, hence their behaviour is not represented by the envelope.
Such an envelope is not complete. A complete envelope is the one that includes all possible
behaviours. On the other hand, if the envelope is too wide it includes zones that can not be
reached by any of the systems belonging to the family. Such an envelope is not sound. An
envelope is sound if every point inside the envelope belong to the output of at least one of the
systems belonging to the family. A complete but not sound envelope is an overbounded
envelope. A sound but not complete envelope is an underbounded envelope.

The ideal goal would be a complete and sound envelope, that is the exact envelope. However, a
more realistic goal will be a minimum overbounded envelope or a minimum underbounded
envelope depending on the use of the envelope. For instance, if the envelope is to be used for
fault detection it can be said that the system is faulty if the system output goes off the envelope.
Therefore with an overbounded envelope the system can be faulty and it is not detected, and, on
the other hand, with an underbounded envelope it can be said that the system is faulty even if it
is not. In the latter case unjustified alarms are generated hence it is better to have overbounded
envelopes

Another property an envelope can have is stability. If the envelope width grows through time, it
is unstable. This is an indesirable property because the envelope becomes useless.

5.- SIMULATORS AS ENVELOPE GENERATORS

In this section, an overview of the simulators that generate envelopes is presented. These
simulators have been classified into three groups depending on the information used for the
simulation:
• Quantitative or numeric.
• Qualitative.
• Semiqualitative. A combination of the previous two types.

5.1. Quantitative simulation of interval systems

Qualitative or numeric simulation makes numeric predictions of the system states. This implies
the prediction of the variables’ values at determined time points.

There is a description of the different quantitative methods to simulate the behaviour of interval
systems below.

5.1.1. Threshold calculus

One way to consider uncertainty is to have separately a precise model and the uncertainty
associated to that model [Kay96]. The behaviour of the precise model, a representative of all the
family of models called nominal system, can be simulated using a simulator for precise models.
To obtain the envelope a tolerance called threshold is superimposed to the trajectory. Thresholds



can be fixed or variable. If it is variable, its size can depend on the working point, the values of
inputs and outputs, etc. Such a threshold adapts to circumstances hence is called adaptive
threshold. It has better properties than a fixed threshold, of course, but it is also more difficult to
compute: a new value must be computed at every time step so it is not sufficient to compute a
single value [Gas96b].

The threshold represents an estimation of the error at each point or the likelihood of the
envelopes, that is the confidence degree of the envelopes. It can be computed by probabilistic or
statistical methods. These methods are applicable only if the system is linear [Kay96],
accessible and measurable [Bon94] and the uncertainty can be modelled as a probability. One
disadvantage of these methods is that it is necessary to deal with great amounts of data to have
reliable results. Another disadvantage is that neither completeness nor correctness can be
assured.

5.1.2. Scalar systems method

Another way to study a family of systems is studying many precise systems (as many as
possible) belonging to the family and then extracting conclusions for the whole family. These
techniques are slow and sometimes it is not possible to extrapolate the properties of the studied
systems to the whole family. There can exist unstudied systems where the extrapolation is not
valid [Kay96]. This is the reason to say that these methods have no guaranty. This will be
demonstrated with a practical case in the next paragraphs.

In the case of simulation, systems belonging to the family have to be chosen and simulated. Any
of the simulators for precise (scalar) systems can be used to simulate the behaviour of these
systems, where the parameters are real numbers. These simulators use numerical methods to
integrate the differential equations used to describe the system. The envelopes are obtained
superimposing all the trajectories obtained.

If the systems to be studied are chosen randomly, it is said that it is a Monte Carlo method.

The systems to be studied can also be chosen in a systematic way by making a grid into the
parameter space. In this case, the systems obtained combining the limits of each interval are
called extreme systems. For instance, given the system
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which are shown in figure 3.

The output of these systems when the input is 1 between t=0 s and t=50 s and 0.5 after this time
is shown in figure 4.

In this figure there are represented the outputs of the four systems with dotted lines and the
resulting envelope in dashed lines. Moreover, it is represented in solid line the output of the
system
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figure 3. Extreme systems

This system belongs to the considered family but its output is, for a period of time, outside the
envelope obtained simulating extreme systems, as it can be seen in the zoom of figure 5

Therefore, the envelopes obtained simulating extreme systems are underbounded. The envelope
can be widened simulating other systems belonging to the family. This additional systems can
be chosen in a systematic way, like in figure 6, or randomly, like in figure 7. But the result is
ever the same: the widened envelope will be closer to the exact one but it will remain an
underbounded envelope. The reason is that it can ever exist an unstudied system whose output is
outside the envelope. Hence, this is a method with no guaranty: conclusions can be taken out
from the studied systems, but not from the unstudied systems. A property of this method is
convergence: as the number of studied systems increases, the envelope closes more and more to
the exact envelope. In the limit, when infinite systems belonging to the family are studied, the
envelope obtained is the exact one [Ber92].
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As a conclusion, the properties of this method are:
• The envelope obtained is underbounded or incomplete.
• It is a convergent method.
• It is valid only for time invariant systems because time variant systems can not be simulated.
• To compute the limits of the envelope at a specific time point it is necessary to simulate the

behaviour of all the considered systems from zero to this time and search the maximum and
the minimum outputs. Hence it is not recursive and it can not be used in real time.

5.1.3. Optimisation

The recursivity problem can be solved if the discrete representation of the system is used to
simulate its behaviour. This representation in differences’ equation is like this:

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
0

5

10

15

20

25

figure 6. Scalar systems chosen systematically.
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figure 7. Scalar systems chosen randomly.
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In this equation it can be observed that the output of the system at a time point depend on the
values of the previous outputs and inputs.

If an interval system is represented by difference equations, parameters ai  and bi  are intervals,

outputs ( )y i  also are intervals because they express the limits of the envelope and the inputs
( )u i  are intervals if they are imprecise, for instance if there are errors in the sensors (figure 8).

Hence, finding the limits of the envelope at a time point and finding the maximum and the
minimum of a function into a parameter space are the same. This is a global optimisation
problem. There are many different methods for global optimisation: methods based on
gradients, genetic algorithms, etc. Many of them have no guarantee: that is a local optimum can
be found when the global optimum is searched. In the case of envelopes, this means an
incomplete or underbounded envelope.

5.2. Semiqualitative simulation based on interval arithmetic

It is necessary to study all the possible cases to obtain a guarantee, that is, not underbounded
envelopes. This can be done using interval arithmetic. Methods that use interval arithmetic are
not only numeric methods but also semiquantitative or semiqualitative methods, because they
do not use only numeric knowledge.

5.2.1. Brief introduction to interval arithmetic

An interval is a set of real numbers like
[ ] { }xxxxxxX ≤≤ℜ∈== ,

where x  is the lowest end of the interval and x  is the highest end of the interval.

The function obtained substituting real numbers by intervals and real number operations by
interval operations into a real function is called united extension or natural extension of the real

function. One of the properties of this extension is monotonic inclusion : if ( )f xi  is a function

into a parameter space x Xi i∈ , ( )iXF  is the united extension of ( )f xi  and it complies that

( ) ( )f X F Xi i⊆ .

United extension is very useful to compute range of functions because it gives a guarantee on
the result (function can not take values outside the range computed using interval arithmetic).

Modelu y

figure 8 If the model or the inputs are intervals, the
output will be an interval.



On the other hand, exact result (complete and sound) can not be obtained in some cases. Interval
arithmetic considers that each incidence of a variable in a function is independent of each other.
Therefore, when there are multi-incident variables (variables that appear at different places into
an only function), interdependent variables (there is a relation among them) or variables that
depend on the same variable, the range obtained (an interval) includes the values that can take
the function plus other values that the function can never take.

One way to tighten the result when there are multi-incident variables is splitting the parameter
space into smaller subspaces.

5.2.2. Use into simulation

There are some semiqualitative simulators based on interval arithmetic and monotonic
inclusion. Some of them use integration algorithms adapted to work with intervals.

Moore’s interval simulator [Moo66] [Moo79] obtains much overbounded envelopes because
ignores multi-incidences. Moreover, there is the wrapping problem. This problem is linked to
the use of interval arithmetic and was described for the first time by Moore [Moo66]. If the state
of the system is represented by an hypercube at a time point because each variable is an interval,
maybe the system will not evolve to another hypercube at the following time point. In figure 9 it
is shown an example where there are two state variables and therefore the hypercube into the
parameter space is a rectangle.  This rectangle evolves to a rhombus in the following time step
(it could evolve to any figure in two dimensions). As the value of each variable is expressed
with an interval, new state will be represented with a new rectangle, which includes all possible
states and impossible states as well. These impossible states are shown shadowed in the figure.
Hence, the envelopes obtained will be overbounded and, possibly, they will be unstable. This
problem can not be solved simulating with smaller steps, because more steps will be needed.

Other simulators based on these algorithms are the interval simulator by Markov and Angelov
[Mar86] and the simulator AWA [Loh88], which tries to minimise the wrapping effect moving
the system of co-ordinates along the trajectory of the system into the parameter space. This goal
is achieved in some cases [Kay96].

NIS (Numerical Interval Simulation) [Ves95] uses interval arithmetic to compute, at every time
step of the simulation, maximum and minimum values the derivative of each variable can take.
These values are used for Euler or Runge-Kutta integration algorithms. The obtained envelopes
are overbounded

Other simulators based on interval arithmetic are described below.

figure 9. The wrapping problem.



5.2.2.1. NSIM

NSIM (Numerical Simulator using Interval Methods) [Kay92] [Kay95] [Kay96] uses the same
models than QSIM and is an enhancement of Moore interval simulator when there exists quasi-
monotonicity. A system is called quasi-monotonic if the exact envelopes can be obtained
through the simulation of extreme systems [Kay96].

Given an interval function (a differential equation where the parameters are intervals), this
simulator obtains a pair of functions (extreme functions) which envelop the original function in
a certain dominion. Hence, completeness is guaranteed. After this, a conventional simulator is
used for the simulation. This is one of its advantages: it is no necessary to develop a specialised
simulator and therefore it makes good use of speed and efficiency of existing simulators and
exploits their possible enhancements.

The disadvantage is that if there are multi-incident or correlated variables, extreme functions do
not belong to the original family of functions and therefore they are outside its dominion. The
envelopes obtained in these cases are overbounded and they can diverge and become unstable,
that is, width of the envelope grows through time.

Another problem is wrapping. To solve these problems, Kay proposes various ways:
• Wrapping problem. Definition of the intervals with respect to a mobile origin of co-

ordinates  instead of using a fixed origin.
• Ignored correlations. Build models without ignored correlations. That is, decrease number of

multi-incident variables and number of incidences of them.
• Split state space into smaller subspaces. As it was noted above this makes the result of

evaluating functions using interval arithmetic closer to the exact result when there are multi-
incident variables.

5.2.2.2. Simulator of Gasca et al.

[Gas96b] As stated above, one way to avoid the wrapping problem when using interval
arithmetic is to define the intervals with respect to a mobile origin of co-ordinates instead of
defining them with respect to a fixed origin. This can be done computing the trajectory of one of
the systems that belongs to the family under study and then superposing a threshold to it. This
simulator is based on this principle. The models are represented by band functions and the
parameters are represented by intervals covering all real values corresponding to each
qualitative label. Trajectories of the family of systems are represented by polyhedrons in the
state space defined from a point, a transformation matrix and an uncertainty vector.

Given that transformation matrix is obtained after some simplifications and approximations, the
properties (completeness, soundness, stability) of the resulting envelope are not known.

5.3. Qualitative simulation

In order to perform qualitative reasoning it is necessary to have a model and some information
about the variables of this model. The model can be qualitative information on the relations
between variables. For instance, if value of variable a increases, value of variable b also



increases. Information about variables, from a purely qualitative point of view, can be a positive
value, a negative value or zero (there is a fourth possibility to be considered: unknown value),
hence real axis is divided into three parts. This information is used by an inference engine and
some conclusions are obtained [Cog96]. These tools for reasoning are very useful to solve
problems where information is poor, like qualitative knowledge, but since the information is
poor, the results are poor as well.

Qualitative simulation makes a prediction of the qualitative states where the system will be,
using a non-numeric model. This means it distinguishes qualitatively (with labels, not with
numerical values) the states where the system will be or the values the variables will have.

Most of the qualitative simulators are not causal and hence do not consider the time. Therefore,
they predict which states will exist in the future but not when will they exist. Some qualitative
simulators, however, are causal and consider time.

Qualitative simulation consists in two phases [Cog96]. In the first one, called TA (Transition
Analysis), many states are generated without using the model of the system. In the second
phase, called QA (Qualitative Analysis), these states are filtered using the model, hence states
that do not fulfil the constraints of the model are eliminated. This is called constraint
propagation.

Qualitative simulators are used when knowledge of the system has important limitations or
when it is interesting to have qualitative results. These results are poor because they are
obtained from a poor knowledge. If the complexity of the systems to be simulated increases, the
predictions become poorer [Bon96] and the computational effort to be made increases too.
There are big deficiencies in order to take advantage of the possible numerical knowledge of the
system. In the of interval systems, the envelopes obtained are much overbounded.

In [Cog96] a classification of simulators according to their degree of constructivity is done. A
numeric simulator is constructive because it uses the model of the system to generate the values
of the variables of the system: it solves the equations and if it is a dynamic system it integers
them. In other words, it constructs future values of variables starting from the model of the
system. On the other hand, a qualitative simulator is not constructive because the model of the
system is used only to filter out the impossible states that have been generated before.
Semiqualitative simulators are somewhere between these two extreme points, according to the
degree of use of the system model. If a simulator is more constructive than another simulator, it
is more efficient in order to take advantage of the available information and generates less
impossible states [Wie91]. In spite of this, in some cases a non-constructive simulator is very
useful. For instance when there are algebraic loops a non-constructive simulator can be used but
a constructive simulator can not.

Some qualitative simulators are described below: QSIM, PA and Ca~En. They are only a
sample of the existing ones: SQUALE [Mis91], DIAPASON, etc.

5.3.1. QSIM

Most popular qualitative simulator is QSIM (Qualitative Simulator) [Kui86]. Probably it is also
the most sophisticated due to its continue evolution since it was first implemented [Cog96].
Since then, new elements are being added continuously.



Each variable is represented by its value and the value of its derivative. The value of the
derivative is expressed in a purely qualitative form: inc for increasing (positive derivative), dec
for decreasing (negative derivative) or std for steady (zero derivative, stable variable). The value
of the variable can be expressed also in a purely qualitative form or, if more information is
available, can be expressed using labels, that is defining a value space discretising real axis in
more than three parts using landmarks. Since each variable is represented with a pair
magnitude/derivative, time function of the value of the variable is approximated with a first
order Taylor series.

The model of a system is represented by the relations between its variables: algebraic operations
(sum, product, sign change), derivative (one variable is the derivative of another), monotony (if
the value of a variable increases, the value of the other increases too).

Algorithm of simulation consists of three parts: transition rules, constraint and Waltz filters, and
global filter. Transition rules are based on the Euler numeric integration algorithm [Cog96].
They are applied to each variable individually, as if each variable was independent from each
other. In consequence, impossible transitions are generated. In the following phase, some of
these impossible transitions are eliminated because they do not fulfil the constraints.

QSIM is not a constructive simulator because it does not use the model of the system to
generate the transitions.

The result of the simulation is a representation of the qualitative states (expressed by the
variables’ values and the values of their derivatives) that will succeed to the present state. The
duration of these states is not given.

Original QSIM was complete [Kui86], as it found all possible behaviours of the system. But
new filters, which optionally can be used or not, have been added through the years and some of
them make QSIM lose this property [Cog96]. On the other hand, it is not sound because it can
find behaviours that are not real. One of the reasons is that if a predicted state coincides totally
or partially with various labels, it is considered that the variable can take any of the values
included in these labels, including the ones that have not been predicted.

5.3.2. PA

PA (Predictive Algorithm) [Wie91] is a qualitative simulation algorithm integrated in PE
(Predictive Engine) [Wie89]. It belongs to the same family than QSIM but it is more
constructive than QSIM. The problem of QSIM is that in the first phase, many impossible states
are generated and in the second phase, some of them can not be eliminated. The solution is to
generate less impossible states in the first phase making it more constructive, more similar to a
numeric simulator.

In PA, the user chooses the number of successive derivatives to be used for each variable. QSIM
uses the value of each variable and the value of its first derivative and if the user wants to use
higher order derivatives new variables must be created, which will be considered independent in
the first phase of the simulation. This makes PA more flexible for the model of the system, that
can be interpreted as a set of differential planes. Hence, there were two planes in QSIM and



there can be the desired number of planes in PA [Cog96]. Such a description of the model
implies a set of constraints that are used to generate the states of the variables. The procedure to
generate the transitions begins at the plane of the highest order derivatives and decreases the
order to end at the plane with no derivatives (zero order derivatives). Therefore, PA already uses
the system model in the first phase of the simulation while QSIM uses it only in the second
phase for filtering. That is the reason to affirm that PA is more constructive than QSIM.

Another aspect that makes PA more constructive than QSIM is that in QSIM the order of the
equations is not important and in the first phase of the simulation, all variables are considered
independent. However, in PA equations must be causally ordered so less impossible transitions
are generated in the first phase.

In spite of that, PA is not totally constructive because temporal information obtained from the
simulation is insufficient.

In the phase of filtering, transitions are verified using the constraints. If a transition does not
fulfil all constraints, it is eliminated. If a transition fulfils all constraints the transitions yet
unverified are eliminated and the simulation continues hence ignoring other possible transitions.
This makes PA incomplete.

5.4. Semiqualitative simulation based on qualitative simulation

To enhance qualitative methods, quantitative information must be added. Resulting methods are
semiqualitative methods. Some of the existing semiqualitative simulators are described below.

5.4.1. Semiqualitative simulators based on interval arithmetic

5.4.1.1. Q2

Q2 [Kui88] is an extension of QSIM [Kay92]. The basis of the simulator is QSIM to which an
interval arithmetic module has been added. This module works in parallel with QSIM and
computes the value of each variable using the constraints. The final value is computed
intersecting the values given by this module and by QSIM. Therefore, the value of each variable
is no more qualitative (a predefined label). It is an interval value [Cog96].

Sometimes intersection gives nothing. This means the predicted state is impossible so it is
eliminated. In conclusion, envelopes are tighter than QSIM ones.

Times are calculated using first order Taylor-Lagrange formula. In [Mis91] there is a
demonstration that it does not give significant information near critical points with zero
derivatives [Ves95].

5.4.1.2. Q3

[Ber92] Numerical simulators are more precise if simulation step decreases. This principle is
applied by Q2 to qualitative simulation. It inserts intermediate states in qualitative simulation



hence number of states increases, number of constraints increases and precision increases.
Therefore, it is convergent: as more intermediate states are added, more precise are the results.
The problems are rounding errors of computers and computing power needed. Importance of
both of these two things increases faster than precision.

5.4.1.3. SQSIM

Kay [Kay96] has combined simulators QSIM, Q2, Q3 and NSIM into an only one called
SQSIM (Semiqualitative Simulator), that intersects results given by each of them. If
overbounded envelopes are intersected, a new tighter overbounded envelope is obtained. If any
of the envelopes intersected is not overbounded, the result will be tighter, but it will not be
overbounded. This is the problem of SQSIM: some of the simulators used give envelopes with
unknown properties hence envelopes obtained using SQSIM have unknown properties as well.

5.4.1.4. Ca~En

Ca~En (Causal Engine) [Bou94] is a reasoning system for real-time applications. It is based on
causality and constraints and it includes a qualitative simulator that works with a real-time
clock. It works with numeric and symbolic (for instance colour) variables.

Models are represented using two levels: local constraints’ level and global constraints’ level. In
the local constraints’ level, influences between variables are made explicit. In the global
constraints’ level constraints derived from physical laws are indicated. Therefore, Ca~En uses a
representation that needs multi-model reasoning.

For the simulation, value of each variable through time is computed using interval arithmetic
with Euler integration algorithm. After this, constraints are used to refine the results.

The obtained envelopes are overbounded due to the use of interval arithmetic.

5.4.2. Semiqualitative simulators based on fuzzy logic

Follows a description of some semiqualitative simulators based on fuzzy logic. It will be seen
that all of them use interval arithmetic after fuzzy sets are converted into intervals through α-
cut.

5.4.2.1. FuSim

FuSim (Fuzzy Qualitative Simulation) [She93] is an extension of QSIM. It is not constructive,
like QSIM. In FuSim, variables’ values are given by intervals instead of qualitative labels. It
indicates the time the system will remain in each state. This time is computed using first order
Taylor-Lagrange formula, like Q2, and hence it has the same disadvantages as Q2 near the
points with zero derivatives.



When the value a variable will have at a time point is predicted, it does not coincide, in general,
with one of the possible fuzzy values of the variable. Then the likeliest value is chosen using
metric distance and state priorization. This action makes FuSim unsound (it includes impossible
states) and incomplete (possible states are not included)

5.4.2.2. Mycroft

Mycroft [Cog96] includes two simulators (a non-constructive simulator and a semi-constructive
one) plus other elements. These simulators are based on QSIM, FuSim and PA. It takes
advantage of the best characteristics of each one and enhances some of them. For instance:
works with n derivatives of each variable, like PA; generates time information thanks to the use
of fuzzy sets, like FuSim; makes simulation semiconstructive because equations are causally
ordered, like in PA. Some of the new features are a new priorization algorithm, the way to deal
with intermediate variables, etc.

Semi-constructive simulator is not complete. A proof is that in some simulations there are not
predicted future states because all generated states are filtered out.

5.4.2.3. Qua.Si.

[Bon94] [Bon96] They are three simulators (Qua.Si. I, II and III) for continuous dynamic
systems. Model is expressed using differential equations where parameters or initial conditions
can have fuzzy values.

Qua.Si. I uses the scalar systems method, described above, reconstructing the hypercube at
every time step. It simulates characteristic points of the hypercube in the state space: vertices,
centre of edges, centre of faces, etc. Therefore, it produces incomplete envelopes. Moreover, the
envelopes are unsound, due to wrapping problem, and unstable.

In Qua.Si. II the hypercube is not reconstructed at every time step hence envelopes are
underbounded.

Qua.Si. III treats simulation like an optimisation problem. Found optima are not guaranteed
because it uses optimisation methods with no guaranty. Computational complexity grows
exponentially with time (at each time point the optima are computed with respect to the initial
state) and when the order of the system grows (the initial hypercube has more surfaces).

6.- CONCLUSIONS.

Different options to simulate interval systems’ behaviour have been presented. Existing
simulators can be classified into three groups:
• Quantitative. Numerical techniques are applied:

• Fixed threshold calculus. Completeness of the envelopes is guaranteed only if threshold
is high, but this is not very useful because envelopes are much overbounded.

• Adaptive threshold calculus. These methods are not adequate for interval systems. They
are better when parameters’ values are given by probability distributions.



• Simulation of scalar systems. Obtained envelopes are underbounded.
• Simulation as an optimisation problem. If there is no guarantee that the optimisation

method will find global optima, envelopes will be underbounded.
• Qualitative. Based on qualitative reasoning. They do not take advantage of numerical

information contained into an interval model. QSIM brings overbounded envelopes, but
there are some optional filters that make it give uncomplete envelopes. PA is incomplete
because it finds only one possible behavior, not all of them.

• Semiqualitative. There are two types of semiqualitative simulators:
• Based on qualitative reasoning plus numerical knowledge. Q2 and Q3 obtain tighter

envelopes than QSIM adding numerical techniques to it. Properties of the envelopes
have not been studied. SQSIM intersects envelopes produced by QSIM, Q2, Q3 and
NSIM. If all the envelopes generated by these simulators were overbounded, the
intersection will be overbounded too, but tighter. But as it was stated above, some of
these simulators have unknown properties.

• Not based on qualitative reasoning. Interval methods can be combined with numerical
methods thus giving semiqualitative methods. Interval methods have guarantee over the
results because united extension of a function has the monotonic inclusion property.
Envelopes obtained by NSIM and NIS are much overbounded. Properties of simulator of
Gasca et al have not been studied yet.

Therefore, existing simulators generate underbounded envelopes, overbounded envelopes or
envelopes with none of these properties or with unknown properties. All of them have a
common characteristic: even if the properties are known, it is not known the degree of under or
overbounding. Hence, if one of these simulators produces overbounded envelopes, for instance,
it is not known if these envelopes are much overbounded or only a few overbounded, it is not
known the distance between the obtained envelope and the exact envelope. Of course, if this
distance could be known, the exact envelope could be known as well.

7.- FUTURE WORK.

The goal is to obtain known-error envelopes. This can be done with a simulator that produces
simultaneously an underbounded envelope and an overbounded envelope. The distance between
these envelopes is the maximum error.

Another goal is to create an algorithm to adjust the error to a desired value, widening the
underbounded envelope or tightening the overbounded one. Modal Interval Analysis [Gar95]
seems to be useful for this goal. It is not difficult to predict that if desired error decreases, the
computational effort will increase.

If these goals are achieved, the new simulation technique will be included into Ca~En simulator.
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